- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Abdel_Aziz, Yasmeen S (1)
-
Hsiao, Benjamin S (1)
-
Liu, Alan (1)
-
Yu, Shengyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study demonstrated a sustainable, zero-waste approach to produce carboxylated lignin-containing cellulose nanofibers (LCNFs) directly from untreated sugarcane bagasse (SCB) using nitro-oxidation process (NOP) fol lowed by high-pressure homogenization. Systematic optimization of reaction parameters was conducted, including reaction time, HNO3-to-SCB ratio, HNO3 concentration, temperature, and co-oxidant addition (KNO₂). The results revealed that HNO3 concentration played the most dominant role in tailoring LCNF properties. Notably, the resulting LCNFs exhibited high dispersibility, with zeta potential values ranging from 38 to 65 mV due to the increasing surface carboxyl content (0.43 to 1.21 mmol/g) even under relatively mild conditions (e.g., 50 ◦C, 5 h). Lowering the acid concentration significantly increased the lignin content, enhancing the thermal stability. All LCNFs exhibited nanoscale diameters (7–13 nm), high crystallinity (54 to 70 %), and shear- thinning behavior. Elemental analysis of NOP effluents confirmed their enrichment with macro- and micro- nutrients, enabling their reuse as biofertilizers. This dual valorization of solid and liquid products positions NOP as a viable nanocellulose production and nutrient recovery pathway from lignocellulosic biomass. Resulting LCNFs, with their amphiphilic, biodegradable, and tunable surface properties, represent a compelling platform to make new materials to replace some synthetic polymers and reduce microplastic and chemical pollution.more » « lessFree, publicly-accessible full text available November 15, 2026
An official website of the United States government
